1. Given \(f(x) = x^2 \), find \(f(x + h) \).

2. What are the exact values of (a) \(\sin \pi/6 \) and (b) \(\cos \pi/6 \)?

| \[\frac{1}{x + h} - \frac{1}{x} \] |

3. Simplify:

4. Graph the function

\[
y = \sin(x - \frac{\pi}{4})
\]

5. Graph the set on a number line:
\[
\{ x \in \mathbb{R} : |x - 3| < 4 \}
\]
Note that \(\mathbb{R} \) denotes the set of real numbers.

6. Graph the circle whose equation is given by
\[
x^2 + y^2 + 6x - 6y + 2 = 0.
\]
Indicate the coordinates of the center of the circle and the length of the radius of the circle.
<table>
<thead>
<tr>
<th>Question</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>Solve for (x): (\log(1 + x) + \log(2 + x) = 2)</td>
</tr>
<tr>
<td>8.</td>
<td>Triangle ABC is an equilateral triangle and segment ED is parallel to segment AB as shown in the figure below. Express (x) in terms of (h).</td>
</tr>
<tr>
<td>9.</td>
<td>Find all pairs ((x, y)) that simultaneously satisfy the following two equations: (x^2 + y^2 = 9) and (y - x = 1). Graph the two equations, and show the points of intersection of the graphs.</td>
</tr>
<tr>
<td>10.</td>
<td>Prove the following trigonometric identity: (\frac{\cos^3(x) + \sin^3(x)}{\cos(x) + \sin(x)} = 1 - \sin(x)\cos(x))</td>
</tr>
<tr>
<td>11.</td>
<td>Write an algebraic equation that expresses the following statement: the sum of the distance between point ((x, y)) and point ((1, 2)) and the distance between point ((x, y)) and point ((3, 4)) is equal to 10.</td>
</tr>
<tr>
<td>12.</td>
<td>Given: (\overline{XZ} \equiv \overline{YZ}, \overline{XV} \perp \overline{YZ}, \overline{YU} \perp \overline{XZ}). Write a two-column proof to show that (\overline{XV} \equiv \overline{YU}).</td>
</tr>
</tbody>
</table>

FreedomProject Academy
Calculus I Placement Test
Print, Complete Showing ALL Work
(Calculators Allowed)
Scan and Email to tests@fpeusa.org